Annapolis, MD - The data released April 6 by the Chesapeake Bay Program, though incomplete, show that the agricultural sector has a long way to go in meeting Chesapeake Bay cleanup goals. Estimated loads of nitrogen and sediment from agriculture increased between 2013 and 2014, and are still millions of pounds shy of 2017 targets. Estimated loads of phosphorus are still incomplete because the model does not yet account for phosphorus-saturated soils.

Water quality monitoring is the best indicator of progress toward Chesapeake Bay restoration goals, said the Maryland Clean Agriculture Coalition, in response to the pollution indicator report released today by the Chesapeake Bay Program. The Bay Program’s model estimates of recent pollution-reduction efforts do not take into account actual water monitoring samples, which provide a more accurate and real-time assessment of water quality.

For example, in the latest report from the U.S. Geological Survey, “Understanding Nutrients in the Chesapeake Bay Watershed and Implications for Management and Restoration - The Eastern Shore,” water quality monitoring showed that on the Eastern Shore, the concentrations of nitrogen in groundwater, and nitrogen and phosphorus in surface waters, are well above natural levels and are among the highest in the nation. The report also found that fertilizer and manure applied to agricultural lands in past decades exceeded the amount needed by crops.

“As the Chesapeake Bay Program mentioned today, we have reason to believe that still more actions are necessary to successfully manage phosphorus and that more state and local actions will need to be in place in order to meet phosphorus reduction goals for the Bay,” said Abel Russ, Attorney, Environmental Integrity Project. “Today’s pollution indicator information is an estimate -- just like a weather forecast. What we find in the water through monitoring and sampling is the true indicator of clean water, just as we know what the real weather is when we walk out our front doors.”

Excess nitrogen and phosphorus can accumulate in groundwater and soil, moving very slowly from upland areas to streams that eventually contribute to the water-quality problems in the Chesapeake Bay. Soils saturated with nutrient pollution were not part of the current computer simulation. The Chesapeake Bay Program notes that soil data will be included in the Total Maximum Daily Load (TMDL) Midpoint Assessment in 2017.

“Chesapeake Bay report cards released by the University of Maryland Center for Environmental Science (UMCES) over the last two years give our water quality a "C" grade,” said Bob Gallagher, co-chair of the Maryland Clean Agriculture Coalition. While it is good news that states are making progress toward our Chesapeake Bay clean-up goals, water quality samples and UMCES reports show we have a long way to go.”

Maryland and the Bay states, along with the District of Columbia and the U.S. Environmental Protection Agency, forged an agreement to reduce tens of millions of pounds of pollution by 2025 known as the Chesapeake Bay Total Maximum Daily Load, or TMDL. Experts say meeting these pollution limits represents our last, best chance to save the Chesapeake Bay.